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1. Introduction  
Global Navigation Satellite Systems (GNSS) is the standard generic term for satellite navigation 

systems or “sat nav”. The GNSS allows electronic receivers to determine their location (longitude, 
latitude and height) with a precision of a few meters using time signals transmitted along a line-of-sight 
by radio on satellites. The receivers can also determine the precise time.  
 Most of the already available GNSS receivers utilize the Global Navigation System (GPS) but there 
other GNSS system in development. Most receivers utilized nowadays are built using hardware to 
perform most of the tasks necessary to give a position and time to the users. Some of this hardware parts 
can be replaced using another type of architecture. Recent approaches are more focused on developing a 
software solution that reduces the hardware implementation by taking code as close to the antenna as 
possible. The objective of this work is to develop a set of tools that can be used to test and implement 
more affordable and robust GPS receivers.   

 One of the main advantages of the software defined receiver is the flexibility of the design, because 
it allows reconfiguring the software to change parameters that will otherwise incurred in high cost if 
performed in hardware.  
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2. Global Navigation Satellite System Overview 
 

In 2010, the only fully operational GNSS is the United States GPS. The Russian (GLONASS) is 
another GNSS in the process of being restored to full operation. The European Union’s Galileo 
positioning system is a GNSS in initial deployment phase, scheduled to be operational in 2014. China 
will expand its regional Beidou navigation system into the Compass navigation system by 20201. [1].  
 The GPS (operational fleet of the US) uses the concept of measurement time-of-arrival (TOA) to 
compute a receiver position [2]. For this method to work, the position of all transmitters needs to be 
known and the receiver and transmitter’s clocks need also to be synchronized. From TOA, the 
propagation time can be computed. With this time it is possible to get a range estimate to the transmitter, 
multiplying the propagation time by the speed of light. At this time, assuming the location of transmitters 
are known, the receiver can compute its position.  

The GPS system consists on a constellation of nominally 24 satellites (29 actual satellites) with an 
orbit radius of 26,650Km, giving the satellites a period of approximately 12 hours. All satellites have 
highly synchronized Rubidium or Cesium atomic clocks as a frequency reference. The satellites 
broadcast Code Division Multiple Access (CDMA) ranging codes and navigation data on two frequencies 
(L1) (1575.42MHz) and (L2) (1227.6 MHz) [1]. All satellites broadcast  in the same frequencies but use 
different codes to differentiate themselves, these codes are described in future sections.  

 Each satellite broadcasts navigation data that allows the receivers to compute the satellite position 
and transmission time. The ranging code is used to determine the propagation time of the signal. If the 
receiver clock was synchronized with the transmitter clock, only three ranging measurements are needed 
for a 3D position solution, but since the receiver clock is usually drifted with respect to the transmitter 
clock, four measurements are needed to solve for longitude, latitude, height and receiver clock offset.  

 The GPS satellite’s carrier frequency at L1 and L2 are then modulated with the ranging codes and 
navigation data using bi-phase shift keying (BPSK). Each satellite generates two different ranging codes, 
the civilian Coarse Acquisition code (C/A) code and the military P(Y) code. These are modulated onto 
the carrier’s frequencies at 1.023MHz and 10.23MHz respectively. The navigation data is also modulated 
on the carriers at a 50bps rate [1]. This navigation message contains almanac information that it is later 
use to determine the satellite position and time of transmission of the signal. The L1 signal carriers both 
civilian and military codes, while the L2 signal is only modulated with the military code. For the purpose 
of this document only the L1 signal would be discussed and analyzed.  

 Modern digital receivers are typically made of three parts: a radio frequency (RF) front-end, a digital 
baseband processor, and a Digital Signal Processing (DSP) module. The function of the RF front-end is 
to convert the signal frequency to an intermediate frequency (IF) that is much lower so that the signal 
can be sampled by an analog-to-digital converter (ADC). The digital baseband processor mission is to 
take care of removing the residual carrier and the PRN code (despreading the signal), this stage is 
normally implemented by an FPGA for the purpose of gaining processing speed. This stage is, however, 
tightly coupled with the DSP module. The DSP module examines the output of the baseband processor 
to determine if the incoming signal is valid for position tracking. If the signal is not being tracked 
correctly or if it is suitable to perform a position lock, then the DSP module will repeat the process until 
a valid signal is lock on the digital receiver.  

                                                           
1 This data may need updating at the time of reading. 
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 Nowadays there is an increasing interest in the development of software defined receivers. In this 
type of receivers, the objective is to move a generic processor as close to the antenna as possible. This 
permits most of the components that are traditionally designed as an Application Specific Integrated 
Circuit (ASIC) to be replaced by signal processing algorithms running in software. The main idea is to a 
software defined system as close as possible to the antenna. 

 Traditionally what have been used are hardware receivers, in which the design is specific for the 
required functionality but involve higher cost of design and a flexibility factor of 0. These receivers are 
normally faster and happen to be a pretty solid tool in today’s market. On the other hand software 
receivers tend to be slower than their non-reconfigurable hardware counterparts (ASIC) but the ability of 
being constantly redesigned opens a good channel for optimization and improvement.  

 The software defined GPS receivers are especially important because they allow the testing and 
implementation of non-standard algorithms such as weak signal tracking, fast acquisition and others. It 
is also an important feature because it can reduce development time of new algorithms since the research 
does not have to wait for a hardware implementation. The type of receiver utilized in this work is the 
software defined GNSS receiver.  
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3. Software Defined Radio for Global Navigation Satellite Systems Receivers 
“Software-radio is an emerging technology, which seeks to build flexible radio systems, multi-

service, multi-band, multi-standard, reconfigurable, and reprogrammable by software.” This definition, 
borrowed from (Principe, Bacci, Giannetti, & Luise, 2011), describes very well the key idea of the 
software-defined radio (SDR) design paradigm. More specifically, an ideal SDR transceiver, sketched in 
Figure 1, is characterized by a commodity off the-shelf (COTS) front-end (FE) that is connected to a 
programmable processing unit (PU), which processes the baseband (BB) incoming, or transmitted, signal 
via flexible software. The PU is the core of the system, since it can impart multiple personalities to the 
transceiver by running specific software, depending on the application context and the required 
functionalities. 

 
Figure 1 General SDR architecture 

The effectiveness and the advantage of a fully SW-defined radio like the one envisaged in Figure 1 
with respect to a fully hardware equivalent design can be synthesized in three key points (Principe et al., 
2011).  

1. Configurability. Within a specific communication technology, this means that a unique 
transceiver for different applications can be factory-configured without any hardware change.  

2.  Updatability/Upgradeability. Since the core is software based, the receiver can be updated and 
upgraded in case of new and improved algorithms or amendments to a standard, while 
maintaining the same hardware components.  

3.  Flexibility. The same transceiver, with the same hardware, can be used for different 
communication technologies, simply by reconfiguring or upgrading the software.  

 Obviously, these properties are not in general borne to a large extent in fully, non-reconfigurable, 
HW devices, which are usually constrained and confined to particular applications. The direct 
consequence of this limitation is, on the one hand, the need to use multiple HW solutions for different 
technologies and, on the other hand, the possible need of HW replacements at the advent of even modest 
changes in standards or technologies. Still, we must see how the general notion of an SDR can be 
beneficial to the field of GNSS.  

 Satellite navigation has witnessed the advent of a number of new systems and technologies: after the 
landmark design and development of the GPS. Recently, new features have been studied to improve the 
performance of the new GNSS, based on the experience of GPS. Multi-personality receivers switch from 
one satellite system to another and process their signals performing multi-constellation navigation, and 
at the horizon there is also the integration of satellite navigation with different positioning data coming 
from different, possibly local, sensors (indoor or inertial navigation) . In this framework, an SDR-based 
receiver has no difficulty in performing the necessary functions of data fusion among different sources 
of information.  
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All of the above represents, in the authors’ opinion, a very well-founded motivation that led the 
application of the SDR paradigm to the design of GNSS receivers. The work presented below intends to 
provide a set of functional tools that would facilitate the design, modeling and simulation of new GNSS 
techniques within the Simulink environment.  

  



6 | P a g e  
 

4. Library Description 
 The GPS, Software Defined Radio, Simulink Library includes at the moment 7 blocks, as shown in 
Figure 2, which are used to process and simulate raw GPS signals. This library was designed to help in 
the development of algorithms that will execute faster GPS synchronization. Having a platform were 
incoming signals parameters can be changed offers a solid base to test new algorithms for GPS SDR-
based technology. 

 

 

Figure 2 GPS Software Defined Library Modules 

Summary of Block Functionality (inline left to right description): 

1. GPS PRN Generator to Signal: The block generates the 1023 bits long C/A sequence. The input 
to the block is a constant value that specifies the desired PRN code. The allowed input values are 
between 1 and 37. The block functions as a continuous system dependent on the Simulink’s 
simulation time. In order to work properly the system requires 1023 time steps to generate the 
desired chip for the C/A code. 

2. GPS PRN Generator to Frame: The block generates the 1023 bits long C/A sequence. The input 
to the block is a constant value that specifies the desired PRN code. The allowed input values are 
between 1 and 37. The block generates a frame based output of 1023 samples not dependent on 
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the simulation time. It is recommended to set the simulation parameters to execute a single step 
simulation in order to generate the desired code. 

3. Circular Shift Block: The block performs a circular shift of the Signal by the amount specified 
by Shift, the block is equivalent to the "circshift" function of MATLAB. 

4. C/A Code Upsampler Block: The block performs an up sampling to the input PRN signal. Once 
the desired sampling frequency is specified the block interpolates the input samples of the PRN 
code until the desired sampling frequency is achieved. The block needs to receive an input 
signal of 1023 samples for the desired GPS satellite, and the output signal would have a length 
of fs/1000 samples corresponding to the up-sampled signal. 

5. C/A Code Generator: The block was created as a cosmetic tool to create the C/A code of a 
single PRN given any value of the sampling frequency. This block is ideally used for generation 
of the local pulse for cross-correlation operations. 

6. Change 0 by -1: The blocks perform the conversion of the 0 values in the PRN code to -1. This 
is used to represent the series as in the polar non-return-to-zero format 

7. Selector: The blocks select an element given an index in any vector of matrix input at Signal 
port. The block has been tested extensively with one column vector or one row vector 

8. Code Phase Acquisition Module:  The block develops a code phase acquisition algorithm to 
detect GPS code delay, the block parallelized  the code phase search in the frequency domain 
reducing the number of steps applied to find the desired shift. 

9. Baseline Parallel Code Search (Doppler correction included): The block implements the Parallel 
Code Search Acquisition method of a real time raw GPS signal. The block receives two input 
parameters, where signal is the raw gps signal and C/A code is the local generated code used as 
a method of comparison. 

10.  Frame Based Signal Generator (Any Sampling Frequency): When implementing the signal 
processing parts of the GPS receiver, it is necessary to have available some modeled data for 
testing their functionality under different noise and interference conditions. Even though the 
block does not include the Navigation data it can be used to test and develop different 
algorithms to implement the correlator stage in the GPS-SDR receiver. Set the list of satellites 
under view at the time, indicating with the first index the desired satellite, while the rest are 
considered as interference satellites. The Satellite Delay parameter would specify the phase 
delay on the target satellite specified in the first position of the Satellite's List. The Interference 
Delay Vector specify the phase code for the remaining satellites of the group, notice that the 
first index of the list is conceived as the multipath delay on the simulation2.The gain vector 
specify a different attenuation for each satellite signal in order to model a more realistic 
scenario. AWGN is added to the modeled signal by specifying the SNR parameter. Finally, the 
desired sampling frequency parameter would be used to generate the code given any value of 
the sampling frequency. 

4.1 –GPS PRN Generator Block 
The pseudorandom noise (PRN) codes transmitted by the GPS satellites are deterministic sequences with 
noise-like properties. Each C/A code is generated using a tapped linear feedback shift register (LFSR).  
 The LFSR is a shift register whose input bit is a linear function of its previous state. It is most often 
a shift register whose input bit is driven by the exclusive-or (XOR) of some bits of the overall shift 
                                                           
2 The current simulation assumes interference of only 1 multipath signal, parameter may need changes. 
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register value. The initial value of the LFSR is called the seed, and because the operation of the register 
is deterministic, the stream of values produced by the register is completely determined by its current (or 
previous) state. Likewise, because the register has a finite number of possible states, it must eventually 
enter a repeating cycle. However, an LFSR with a well-chosen feedback function can produce a sequence 
of bits which appears random and which has a very long cycle [4]. 
  The LFSR generates a maximal-length sequence of length N = 2n − 1 elements. A Gold code is the 
sum of two maximum-length sequences, known as G1 and G2. The GPS C/A code uses n = 10. The 
sequence p(t) repeats every millisecond so the chip length is 1 ms/1023 = 977.5 ns ≈ 1 μs, which 
corresponds to a metric length of 300 m when propagating through vacuum or air. The C/A code generator 
contains two shift registers known as G 1 and G 2. These shift registers each have 10 cells generating 
sequences of length 1023. The two resulting 1023 chip-long sequences are modulo-2 added to generate 
a 1023 chip-long C/A code, only if the polynomial is able to generate code of maximum length. Every 
1023rd period, the shift registers are reset with all ones, making the code start over. The G 1 register 
always has a feedback configuration with the polynomial. 
 

𝑓(𝑥) = 1 + 𝑥3 + 𝑥10 (1) 
 
This means that state 3 and state 10 are fed back to the input. In the same way, the G 2 register has the 
polynomial: 
  

𝑓(𝑥) = 1 + 𝑥2 + 𝑥3 + 𝑥6 + 𝑥8 + 𝑥10 (2) 

 

To make different C/A codes for the satellites, the output of the two shift registers is combined in a very 
special manner. The G 1 register always supplies its output, but the G 2 register supplies two of its states 
to a modulo-2 adder to generate its output. The selection of states for the modulo-2 adder is called the 
phase selection. Table 1 shows the combination of the phase selections for each C/A Code. It also shows 
the first 10 chips of each code in octal representation. [5] 
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Table 1 Code phase assignment 

 

 
 
 

Figure 3 shows the block diagram for the generation of the PRN  
 

Satellites 
ID 

number 

GPS PRN 
signal number 

Code phase 
selection 

G2 

Code 
delay 
chips 

First 
10 chips 

octal 
1 1 2 xor 6 5 1440 
2 2 3 xor 7 6 1620 
3 3 4 xor 8 7 1710 
4 4 5 xor 9 8 1744 
5 5 1 xor 9 17 1133 
6 6 2 xor 10 18 1455 
7 7 1 xor 8 139 1131 
8 8 2 xor 9 140 1454 
9 9 3 xor 10 141 1626 
10 10 2 xor 3 251 1504 
11 11 3 xor 4 252 1642 
12 12 5 xor 6 254 1750 
13 13 6 xor 7 255 1764 
14 14 7 xor 8 256 1772 
15 15 8 xor 9 257 1775 
16 16 9 xor 10 258 1776 
17 17 1 xor 4 469 1156 
18 18 2 xor 5 470 1467 
19 19 3 xor 6 471 1633 
20 20 4 xor 7 472 1715 
21 21 5 xor 8 473 1746 
22 22 6 xor 9 474 1763 
23 23 1 xor 3 509 1063 
24 24 2xor 4 512 1706 
25 25 5 xor 7 513 1743 
26 26 6 xor 8 514 1761 
27 27 7 xor 9 515 1770 
28 28 8 xor 10 516 1774 
29 29 2 xor 6 859 1127 
30 30 2 xor 7 860 1453 
31 31 3 xor 8 861 1625 
32 32 4 xor 9 862 1712 
- 33 5 xor 10 863 1745 
- 34 4 xor 10 950 1713 
- 35 1 xor 7 947 1134 
- 36 2 xor 8 948 1456 
- 37 4 xor 10 950 1713 
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1. Notice that the terms of the G2 polynomial that are set are the ones that determine that next state in 
the shift register and that the output of the shift register is determine by the particular PRN that is desired 
to generate. In this case PRN #1 code would be generated after 1023 iterations of the shift register. 
 

 
Figure 3  Block Diagram for the G2 Shift Register. The output from G2, that determines different PRN is set PRN 1, since cell 2 and 6 are 
xored. See table above for details 

 
However Simulink offered a shortcut into this code generation for a much comfortable implementation. 
By using the PN Sequence Generator Block such a behavior may be achieved. The PN Sequence 
Generator block generates a sequence of pseudorandom binary numbers using a linear-feedback shift 
register (LFSR). This block implements LFSR using a simple shift register generator (SSRG, or 
Fibonacci) configuration. A pseudo noise sequence can be used in a pseudorandom scrambler and 
descrambler. It can also be used in a direct-sequence spread-spectrum system. The Block has three main 
features that need to be pointed out. 
 

1. The 'Generator polynomial' parameter values specify the polynomial that determines the shift 
register. The values should be entered as either a binary vector or a descending-ordered 
polynomial3. 

2. The initial states specifies the values in which each cell should start at the moment of 
initialization, for the L1 signal these parameters must be initialized to 1. 

3. The Output mask source indicates how the output is determined for the shift register, as a Dialog 
parameter for constant configuration or as input port for modifiable operation during execution. 

4. The 'Output mask vector' is a binary vector corresponding to the shift register states that are to be 
XORed to produce the output sequence values. These parameters must meet the criteria specified 
in Table 1 to generate the particular satellite code. Notice that for the G1 register the output is the 
one determined by the left most cell as can be seen in Figure 4, by defining the output mask vector 
as “0000000001”. Something equivalent happens with the G2 register, only that the mask vector 
is defined as constants variables of 10 bit by setting only the bit positions present in the xored 
combination defined in Table 1  for each specific PRN. 

  

                                                           
3 Note that the polynomial entered in Illustration 4 is different from the one defined in Equation  1, this happens because 

the LFSR used by the block makes the output to the left instead of to the right, for that reason it is only needed to 
interchange the terms of the polynomial to meet the Simulink specifications. It is however the same polynomial. 
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Figure 4  Parameters specification for the G1 Shift Register 

Finally it is important to point out that the library contains two flavors of the code generation, named: 
1. GPS PRN Generator to Signal. The block is dependable on the simulation time of the code. This 

code needs N time steps to produce an N long signal, this block is used as a visual aid on the 
generation and for successful results it is recommended to set a fixed simulation step size of 1023 
steps. See Figure 5(left).  

2. GPS PRN Generator to Frame. The block is identical to the previous one, with the only difference 
that the block is not dependent on the simulation time, the block is part of a for-loop subsystems 
that iterates 1023 times to produce a signal of 1023 samples equivalent to that generated by the 
GPS fleet. See Figure 5(right). 

 

 
Figure 5 from left to right, the two different flavors of the C/A Code generator 

  

4.2- Selector 

 

Figure 6 Selector Block Diagram 

The Selector block follows the same concepts as the circshift block, it is just a simple tool to integrate 
into the Simulink environment a useful tool as the selection of an element in column or row based vectors. 
Input and output data are specified to the MATLAB Function block in the function header as arguments 
and return values, as in Code Listing 1. The argument and return values of the preceding example function 
correspond to the inputs and outputs of the block in Figure 6. Data, input triggers, and function call outputs 
can also be defined by using the Ports and Data Manager, which can be accessed from the MATLAB 
Function Block Editor by selecting Edit Data. The MATLAB Function block generates efficient 
embeddable code based on an analysis that determines the size, class, and complexity of each variable.  
 

function Value = Select_Element(Index,Signal) 
%#eml 
 
Value = Signal(Index); 
Code Listing 1 Code for Selector Block 
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4.3- Upsampler Block 
 The up sampler block models a real life situation in which the incoming signal is sampled by an 
ADC at a much higher rate than the original frequency of 1.023MHz. This creates a digital version of the 
raw signal. A good approach to model the output of the ADC stage would be to up-sample the original 
signal by repeating each of its 1023 samples as many times as the ratio between the new sampling 
frequency and the original frequency of 1.023 MHz.  Figure 7 shows how the up sampling was performed 
in the Simulink environment. Notice that the ratio between the new sampling frequency and the original 
frequency is multiplied by the iteration variable of the "for-loop subsystem" that goes from 1 to 1023. 
The result of the multiplication is taken and a ceiling operation is performed to get and index. This index 
would be used to extract the element of the 1023 chip long incoming signal and output it to the upsampled 
sequence. 

 
Figure 7 Upsampler Block Diagram 

 
The output of the block would be a signal of size: new sampling frequency/1000 and, therefore, the 
algorithm within the block emulates the output after an ADC sampling stage in a real time application. 
 

4.4- Circular Shift Block 

 
Figure 8 CircShift's Block Diagram 

 
 The circular shift block was created to allow the “circshift” operation inside the Simulink 
environment. B = circshift(A,shiftsize) circularly shifts the values in the array, A, by shiftsize elements. 
Shiftsize is a vector of integer scalars where the n-th element specifies the shift amount for the n-th 
dimension of array A. If an element in shift size is positive, the values of A are shifted down (or to the 
right). If it is negative, the values of A are shifted up (or to the left). If it is 0, the values in that dimension 
are not shifted. 
 
 To export a function into the Simulink environment a MATLAB Function block was used. With this 
block you can write a MATLAB® function for use in a Simulink® model. The MATLAB function you 
create, it is executed in simulation as a native block and it automatically generates code for the Simulink 

function shiftedSignal = fcn(signal,Shift) 
%#eml 
 
shiftedSignal = circshift(signal,Shift); 
Code Listing 2 Code for CircShift Block 
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Coder™ target4.  
 
 The block is used by specifying input and output data to the MATLAB Function block in the function 
header as arguments and returns values, as shown in Code Listing 2. The argument and return values of 
the preceding example function correspond to the inputs and outputs of the block in Figure 8. Data, input 
triggers, and function call outputs can also be defined by using the Ports and Data Manager, which can 
be accessed from the MATLAB Function Block Editor by selecting Edit Data. The MATLAB Function 
block generates efficient embeddable code based on an analysis that determines the size, class, and 
complexity of each variable. 
 

4.5- 1, 0 Level Signaling to 1, -1 Level Signaling. 
After code generation, the codes are combined with the navigation data through modulo-2 adders. The 
exclusive OR operation is used on binary sequences represented by 0’s and 1’s, and its properties are 
shown in  Table 2.  

Table 2  Output of exclusive OR operation 

Input Input Output 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
If the binary sequences were represented by the polar non-return-to-zero representation, i.e., 1’s and −1’s, 
ordinary multiplication could be used instead. The corresponding properties of the multiplication with 
two binary non-return-to-zero sequences are shown in Table 3. 
  

Table 3 Output of binary multiplication 

Input Input Output 
-1 -1 1 
-1 1 -1 
1 -1 -1 
1 1 1 

The internals of the block is presented in the illustration below. A simple operation of multiplication 
by 2 following by adding -1 will ensure that each 0 in a binary sequence will be changed by -1.   

                                                           
4 Review Simulink documentation from the MathWorks website. 
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Figure 9 Change 0 by -1 block diagram  

4.6- C/A Code Generator Block 
The block is just a cosmetic tool to develop a signal acquisition procedure in the frequency domain. This 

method is based on the traditional approach of circularly convolving the incoming signal with the PRN code of 
the satellite. However frequency counterpart method, explained in detail later, basically leverages the fact that 
convolution in the time domain corresponds to multiplication in the frequency domain[6]. The block simply 
separates the generation of the PRN code for easy setup of simulations. 

The block is just as mentioned above a cosmetic tool that was created for purposes of simpler 
implementation, as Figure 10 shows the block is formed of two previously documented blocks, for more 
information on this refer to 4.1 –GPS PRN Generator Block  and 4.3- Upsampler Block . 

 

Figure 10 C/A Code's Block internal structure 

Figure 11, shows the parameter list of the block, and it requires only specifications of two fields: 

1. Sampling Frequency (Hz): The value entered here is just the desired sampling frequency at which 
the ADC would be working, and so the data rate specification for the model. 

2. The satellite’s PRN that the user wishes to simulate. Accepted values here range between 1 and 
37. 
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Figure 11 Parameters specification for the C/A code 

4.7- Code Phase Acquisition Block 
The traditional approach convolves the received signal with the CDMA code of each satellite in the 

time domain. The correct alignment corresponds to the one that maximizes this convolution. This 
approach has a computational complexity of O (n2), where n is the number of samples. More recently 
GPS receivers lock on the satellite using frequency domain computation. This approach leverages the 
fact that convolution in the time domain corresponds to multiplication in the frequency domain. It 
proceeds in the following three steps, shown in:  
 

1. The receiver takes the FFT of the received signal. 
2. It multiplies the output of this Fourier transform by the FFT of the CDMA code. 
3. It performs the inverse FFT on the resulting signal.  

 
This 3-step process is mathematically equivalent to circularly convolving the signal with the code; 

thus, the output of the inverse FFT will spike at the correct shift that synchronizes the code with the 
received signal, [6]. The computational complexity of this approach is O (n log n). For the past two 
decades, this has been the algorithm with the lowest computational complexity for synchronizing a GPS 
receiver.  

 
Figure 12 Steps performed by the FFT synchronization algorithm 

  
Going deeper into this subject we have that The Correlation Theorem states that the Fourier 

transform of a correlation integral is equal to the product of the complex conjugate of the Fourier 
transform of the first function and the Fourier transform of the second function. In our case we perform 
the complex conjugate of the CDMA code, which is a signal that we already have and that is ready for 
processing. Performing this operation on the input signal will induced substantially high calculations and 
more power consumption in embedded applications. 

The blocks only have a setting parameter and it is for the sampling frequency of the acquisition 
method to work, this parameter must be similar to the parameters selected for the 4.6- C/A Code Generator 
Block and 4.8 Baseline Parallel Code Search (Doppler Correction Included). 
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The block implements the Parallel Code Search Acquisition method of a real time raw GPS signal. 
The block receives two input parameters, where signal is the raw GPS signal and C/A code is the local 
generated code used as a method of comparison. 

 

Figure 14 Baseline Parallel Code Search list of parameters 

The block has several parameters to achieve its final functionality, the Signal Size is the size of 
the signal in samples that would be passed to the code, this value have to be an integer multiple of 
(sampling frequency/1000). The intermediate frequency, expressed in Hertz, is the frequency to which 
the carrier frequency is shifted as an intermediate step in transmission or reception. 

The sampling frequency defines the number of samples per unit of time (usually seconds) taken 
from a continuous signal to make a discrete signal. The Desired Satellite parameter defines the satellite 
that the user wishes to target in the simulation process if it is expected to be on the raw signal. 

4.9- Frame Based Signal Generator (Any Sampling Frequency Figure 13 shows the details of the block 
internal configuration, which performs a circular convolution through a frequency domain 
implementation. 
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Figure 13 Code Phase Acquisition internal sub-blocks 

4.8 Baseline Parallel Code Search (Doppler Correction Included). 
The block implements the Parallel Code Search Acquisition method of a real time raw GPS signal. 

The block receives two input parameters, where signal is the raw GPS signal and C/A code is the local 
generated code used as a method of comparison. 

 

Figure 14 Baseline Parallel Code Search list of parameters 

The block has several parameters to achieve its final functionality, the Signal Size is the size of the 
signal in samples that would be passed to the code, this value have to be an integer multiple of (sampling 
frequency/1000). The intermediate frequency, expressed in Hertz, is the frequency to which the carrier 
frequency is shifted as an intermediate step in transmission or reception. 
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The sampling frequency defines the number of samples per unit of time (usually seconds) taken from 
a continuous signal to make a discrete signal. The Desired Satellite parameter defines the satellite that 
the user wishes to target in the simulation process if it is expected to be on the raw signal. 

4.9- Frame Based Signal Generator (Any Sampling Frequency). 
 

This block is one of the most important in the library since it models the noisy, multi-interference 
signal, which will be later processed by the SDR-receiver. There are several features that make this block 
a more realistic implementation. The block is frame-based and it can be plugged into the simulation for 
further correlation operations if the simulation is forced to run only once, this is effectively a simulation 
requirement when using it. Since the block generates the signal using for iterators subsystems, the time 
used for iterations is triggered by the internal clock of the “for subsystem" and thus it is independent of 
the simulation clock time5.   
 
The block proceeds in three phases as follows: 

Phase 1. See Figure 15 for details 

1. Starts by generating the PRN codes of 10 satellites (which is an approximation of the average 
satellites in view at a time) by using the previously described blocks of PRN Generation. Figure 
3, Figure 4 and Figure 5. 

2. Perform the upsampling operation by the value specified in the dialog parameter. The block 
would interpolate the samples and increase the signal size to the desired sampling frequency. 

3. Change the sequence to the polar non-return to zero representation by changing each 0 value by 
-1.  

4. Perform a circular delay on the sequence by the value specified for each satellite. Those values 
are specified in the dialog parameter of the block and are discussed later. 

5. Sums up all the signals generated with the steps described before to create a single signal of 1023 
chips long. 

Phase 2. See Figure 16 for details 

1. The block adds white Gaussian noise to the signal by using the Simulink AWGN block. In this 
stage the input signal is channelized to add the noise and several segments or ”buckets” are 
created from the original input signal. At the moment a total of 40 buckets were created in the 
signal representation after the noise addition. As a result each bucket presents a different amount 
of noise. 

 

                                                           
5 For more information on how Simulink simulation works, please refer to the Mathworks documentation on the subject 

or any Simulink Manual. This manual assumes the reader is familiarized with MATLAB and Simulink environments. 
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Figure 15 Phase 1 of the signal modeling block 

Phase 3. See Figure 17 for details 

1. The last phase is just a utility tool to match the block with the previously developed structure. It 
just reshapes and transposes the signal to get a matrix of 40x1023, which represents 40 buckets 
of the incoming signal to be processed. 

 

 
Figure 16  Phase 2. AWGN addition 
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Figure 17  Phase 3. Signal reshaping stage 

 
The block has several parameters modifiable from the dialog parameters as shown in Figure 18, which 

allows changing the block structure. These parameters modify important aspects of the signal generation 
and are described below: 

1. List of Satellites (1:9): It is a vector based parameter that holds up to 9 satellites PRN numbers. 
The first number entered would represent the target satellite of the simulation. 

2.  Desired Satellite Delay: The value holds the satellite delay or phase delay for the PRN 
specified in the first position of the previous Dialog parameter. 

3.  Interference Delay Vector (1:9)*First entry is for multipath delay: These values hold the 
phase delay for the rest of the interfering satellite signals, where the first value indicates the 
multipath delay for the target satellite. 

4.  Interference Gain Vector (1:9)*First entry is for multipath attenuation: These values hold a 
weight vector to multiply each of the generated vectors by an attenuation coefficient. 

5.  SNR (dB) for AWGN: This value specifies the Signal to Noise Ratio that would be affecting 
the incoming signal. 

6. Desired Sampling Frequency (Hz):  This value specifies the sampling frequency for the 
model.  

 

 
Figure 18 List of parameters for the block 
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5. Using the library. Installation and useful tips 

5.1- Overview 
  A block library is a collection of blocks that serve as prototypes for instances of blocks in a 
Simulink® model. Simulink comes with two built-in block libraries: the Simulink block library and the 
Simulink Coder™ block library. The work described in this document is to be included in the Simulink 
block library, with the single distinction that the library is not built-in inside Simulink. These kind of 
blocks may be denoted as a user-defined library blocks.[7] 

Block libraries, built-in or user-defined are a useful componentization technique for: 

1. Providing frequently-used, and seldom changed, modeling utilities. 
2.  Reusing components repeatedly in a model or in multiple models 

A custom library is used identically as any other library. The library needs to be opened in order to 
be used. This is achieved in the same way as for a model. Once opened, blocks are dragged from a library 
and placed into a model in the usual way 

Simulink provides a Library Browser that you can use to display block libraries, search for blocks 
by name, and copy library blocks into models. All installed libraries appear in the Library Browser when 
you open it. The Library Broswer is a convenient tool for grouping all available libraries, hence when a 
custom library is created the developer will usually want to add it to the Library Browser. 

 

5.2- Adding a Custom Library to the Library Browser 
Adding a library to the Library Browser is achieved by writing a MATLAB function called slblocks 

(in a file called slblocks.m). The function slblocks must have a specific format, and slblock.m must be in 
a directory that is on the MATLAB path. The sample code below shows the traditional file in question 
and how it should be adapted to fit the user needs. It assumes that the library has been saved in a file 
called customlib.mdl. There are two somewhat distinct parts to slblocks: the first part specifies what is 
displayed in the Library Browser; and the second part specifies what is displayed when the library is 
viewed in an older style Blocksets and Toolboxes view 

function blkStruct = slblocks   
%SLBLOCKS Defines a block library.   
  
% Library's name. The name appears in the Library Browser's   
% contents pane.   
  
blkStruct.Name = ['UndergraduateResearch' sprintf('\n') 'Library'];   
  
% The function that will be called when the user double-clicks on 
% the library's name.  
  
blkStruct.OpenFcn = 'UndergraduateResearch';   
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% The argument to be set as the Mask Display for the subsystem. You 
% may comment this line out if no specific mask is desired.   
% Example: blkStruct.MaskDisplay = 'plot([0:2*pi],sin([0:2*pi]));'; 
  
blkStruct.MaskDisplay = ''; 
% End of blocks 
 

Code Listing 3 Code for the slblock.m file implementing the described library 

Once slbocks.m has been written it must be saved and the Library Browser must be closed and restarted 
for the custom library to be seen in the browser. 

5.3- Features of a library 
Although libraries have a very similar look and feel to a model they do have some distinct features. 

These include: 

1. Libraries do not get simulated. 
2.  A library is by default locked. This means that it cannot be unknowingly changed/altered by a 

user -- the user must specifically tell Simulink that they know they are making a change. This 
protects library blocks from mindless or accidental tampering. (When a user tries to make a 
change to a locked library they receive a message asking them if they want to unlock the library 
or if they want to discard the changes they are trying to make.) 

3.  When used in a model a block taken from a library is linked back to the library. This means that 
all instances of the block used in all models are guaranteed to have exactly the same 
implementation. In terms of topology they are in fact exactly the same block. Note that each 
instance of the block may have different parameters. A significant advantage of being linked is 
that changes made to the library block will propagate to all instance of the block in all models 
that use the block. 

5.4- Tips of usage 
 

1. Some of the code presented in the library may require the installation of a C compiler to work 
properly in newer version of Mathworks products. Documentation is available on the Internet 
regarding this issue and it may be easily solved following the directions of the Mathworks 
Documentation Center. 

2. Most blocks on the library are designed to work as frame, for that reason the simulation time 
parameter when executing code must be set to a fixed time step, with a total of 1 time step 
executed at any single simulation. Blocks were designed using internal “For” iteration loops that 
are in charge of all looping requirements. 
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6. Parallel Structures Overview 
This part of the document, and until section 10, proposes alternative architectures to perform a 

circular correlation using the Fast Fourier Transform (FFT) by decomposing the initial circular 
correlation into several smaller circular correlations. Such sub-correlations are independent of each other 
and can be processed in parallel. Even though the results discussed in this document may be applied to 
any system that performs circular convolution or correlation, we will apply it to the acquisition of Global 
Navigation Satellite System (GNSS) signals using a, FFT-based, Parallel Code-phase Search (PCS) on 
the GPS L1 C/A signal. The parallel approach has advantages for hardware-based implementations using 
Field Programmable Gate Array [8]. 

The proposed approach is a modification of the main methods of parallelization described in [8], 
which were previously described in [9] and [10]. Therefore these architectures can be seen as 
complementary to the ones formulated in [8]. The presented architectures do not need the use of 
numerically controlled oscillators for multiplication in frequency as described in [8]. The trade-off is the 
use of a circular shift in time and an extra FFT block, which can be computed in parallel with the others. 
This could be advantageous depending on the overall implementation strategy regarding speed and 
accuracy versus resources.  

7. Circular Correlation using the FFT 
The circular correlation between two finite-length sequences x[n] and h[n] (corresponding to the 

input signal and code replica in our case, respectively), is defined by Equation (1), where N is the number 
of samples in one period of the PRN code, ⋆ denotes circular correlation (mod N) and * denotes the 
conjugate. 

 

In the discrete frequency domain equation (1) can be expressed as: 

 

If we use the FFT algorithm to implement the DFT and using the fact that the conjugate of the 
FFT of a sequence is equal, except for a scaling-by-N factor, to the IFFT of the same sequence [8], then 
the resulting signal after circular correlation via frequency domain can be expressed as: 

𝑦(𝑛) = 𝑥(𝑛) ⋆ ℎ(𝑛) = ∑ ℎ∗(𝑘)𝑥((𝑛 + 𝑘)𝑚𝑜𝑑 𝑁)

𝑁−1

𝑘=0

 (1) 

𝐷𝐹𝑇[𝑦[𝑛]] = 𝐷𝐹𝑇[𝑥[𝑛]]𝐷𝐹𝑇∗[ℎ[𝑛]] 
𝑌(𝑘) = 𝑋(𝑘)𝐻∗(𝑘) 

(2) 

𝑦[𝑛] = 𝐼𝐹𝐹𝑇[ 𝐹𝐹𝑇 [𝑥[𝑛]]𝐼𝐹𝐹𝑇 [ℎ[𝑛]]] (3) 
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8. Metric Definition for Complexity Assessment 
In order to be able to fully describe the intricacy of the proposed structures a complexity metric 

notation was defined based on the one proposed in [8].  

1. The architecture complexity should be characterized by R-F-N-M-S-NCO as described 
below. 

Table 4 Complexity Metrics 

Assigned Code Meaning 
R Ratio of the processing time of the traditional 

architecture to the architectures described in later 
sections 

F Number of FFT operations (or IFFT) required by the 
architecture. 

N The FFT size. N denotes the size of the full signal in a 
serial architecture while N/2 is half the original size and 
it is used in the possible parallel implementations. 

M Number of vector complex multipliers required by the 
architecture 

S Number of vector adders required by the architecture. 
NCO Number of numerically controlled oscillators. 

 

2. The baseline reference would be the tradition PCS method implemented via a direct serial 
architecture in the frequency domain, which would measure: 1-3-N-1-0-0, based on the 
proposed metric.  
 

9. Decomposition of Circular Correlation into Smaller Sub-Correlations 
 
Circular correlation is again defined as in Equation (1) which in the frequency domain, it becomes 

Equation (2): 
 

 

 

Following any of the equivalent procedures shown in [8], [9] or [10] we obtain a decomposition of 
circular correlation based on the even and odd components of each sequence in the frequency domain. 

𝑦(𝑛) = 𝑥(𝑛) ⋆ ℎ(𝑛) 

𝑦(𝑛) = ∑ ℎ∗(𝑘)𝑥((𝑛 + 𝑘)𝑚𝑜𝑑 𝑁)

𝑁−1

𝑘=0

 (4) 

𝑌(𝑘) = 𝑋(𝑘)𝐻∗(𝑘) (5) 
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The even and odd components can be obtained through a stride-by-2 permutation of the original 
sequences. The circular convolution in the frequency domain is defined in Equations (4). 
 

Using the IDFT we can obtain the even an odd components of the circular convolution in the time 
domain, as expressed in Equations (5). 

𝑦0(𝑛) = 𝐼𝐷𝐹𝑇{𝑋0(𝑘)𝐻0
∗(𝑘) + 𝑋1(𝑘)𝐻1

∗(𝑘)} 

𝑦1(𝑛) = 𝐼𝐷𝐹𝑇{𝑒
𝑗

2𝜋

(
𝑁
2

)
𝑘

𝑋0(𝑘)𝐻1
∗(𝑘) + 𝑋1(𝑘)𝐻0

∗(𝑘)} 
 

(5) 

 

It is clear that, because of the multiplication by a complex exponential, this scheme requires the 
use a numerical controlled oscillator [8]. Since multiplication by a complex exponential in discrete 
frequency domain corresponds to a circular shift in the discrete time domain, we will later propose a 
complementary or alternative architecture based on the fact that the multiplication in frequency by a 
complex exponential can be translated to a circular shift in the discrete time domain [9]. 

10. Parallel Circular Correlation Structures  
When doing FPGA-based circular correlation the main reason to choose a parallel approach is to 

have a better throughput, to be able to correlate larger sequences or to address power consumption issues. 
This is because the parallel signal’s length will be half (or shorter) than the original signal length used 
by a serial architecture. The comparison or the advantages from one structure to another are not measured 
in performance gains alone but with respect to their computational complexity, use of hardware resources 
and power consumption. 

To have an optimal algorithm it is important to maintain a reduced number of multipliers. It is better 
to do operations with adders than using multipliers due to their higher computational cost [8]. 
Nonetheless, algorithms that required an exceedingly large number of adders to offset the savings in the 
number of multipliers are not favored either. Other issues are related to the number of FFT stages, and 
whether they are computed in parallel or not, the use of numerical controlled oscillators (NCO) when 
needed, and the number of serial stages that could impact the architecture latency. See Table 7 for 
additional information. 

 

 

𝑌0(𝑘) = 𝑋0(𝑘)𝐻0
∗(𝑘) + 𝑋1(𝑘)𝐻1

∗(𝑘) 
 

𝑌1(𝑘) = 𝑒
𝑗

2𝜋
(𝑁/2)

𝑘
𝑋0(𝑘)𝐻1

∗(𝑘) + 𝑋1(𝑘)𝐻0
∗(𝑘) 

 

(4) 
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10.1- Baseline Parallel Code Search (PCS) 
 

The propagation time is obtained using a synchronization algorithm that allows the device to lock 
on the received signal for each of the GPS satellites seen by the antenna of the receiver. Each satellite 
has its own CDMA code, called the C/A code, which consists of 1023 chips that identifies each one [5]. 
Due to the propagation delay the signal arrives shifted to the receiver, this shift is the exact amount of 
time that took the signal to arrive at the device. The correlation of the shifted version of the satellite’s 
code with a locally generated code produces a maximum spike in the correlation result whose location 
gives the propagation delay. Such delay is used to compute the distance of the receiver to each satellite. 
The geographical location can be then computed by a trilateration process. The receiver does not have a 
clock as precise as the GPS satellites have, but the accuracy of this calculation can be improved with the 
4th satellite used in the trilateration process. 

The figure below shows the output results of the method by using the blocks described in the GPS 
library presented as part of the document. The results obtained may be summarized in the table below: 

Table 5 Baseline Architecture Simulation Output Results. 

Simulation Output Results from Simulink Implementation 

SNR Code Phase Delay (samples) Number of Buckets 
124 379 3 

 

 

Figure 19 Simulation Output results for Baseline PCS 

10.2- Parallel Architecture 1 – Requires the use of a NCO  
 

The first implemented parallel structure follows [8] and is based on the Equations (5) previously 
described: 
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𝑦0(𝑛) = 𝐼𝐷𝐹𝑇{𝑋0(𝑘)𝐻0
∗(𝑘) + 𝑋1(𝑘)𝐻1

∗(𝑘)} 

𝑦1(𝑛) = 𝐼𝐷𝐹𝑇{𝑒
𝑗

2𝜋

(
𝑁
2

)
𝑘

𝑋0(𝑘)𝐻1
∗(𝑘) + 𝑋1(𝑘)𝐻0

∗(𝑘)} 
 

(5) 

 

Where the multiplication by a complex exponential requires a numerically controlled oscillator 
(NCO) or a lookup table of some kind, expressing the phases or angles that can be used.  
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Figure 20 Block diagram of the first parallel architecture implemented. 

This first architecture does circular correlation through the frequency domain. The received signal 
and the generated code are split into two vectors, one containing the entries corresponding to the even 
indexes of the original vector and the other part containing entries corresponding to the odd indexes. A 
FFT is performed on these new vectors so that the samples can be expressed in the frequency domain. 
Note that in order to generate the final correlation result; y[n] from the even and odd components, an 
inverse stride-by-two permutation has to be performed. This architecture involves 6 FFT operations, 5 
multiplications, 2 adders and the use of one NCO. Note that the multiplication by the complex 
exponential could increase the architecture latency even if it is pre-computed and stored, because it 
cannot be done in parallel with the other four multiplications. 

 

Table 6. Architecture 1 Simulation Results 

Simulation Output Results from Simulink Implementation 
SNR Code Phase Delay Number of Buckets Metric 
114.6 379 10 2-6-N/2-5-2-1 
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Figure 21 Simulation output results for architecture 2-6-N/2-5-2-1 

10.3- Architecture 2 – Requires a circular shift in the discrete time domain. 
 

A well-known property states that multiplication by a complex exponential in the discrete frequency 
domain corresponds to a circular shift in the discrete time domain. For a length-N sequence it is as 
follows, 

 

 

This procedure can it is also developed in [9]. Based on this theory we can eliminate the use of a 
NCO and a multiplier from the first architecture. This variant is achieved when the multiplication by a 
complex exponential is exchanged for a discrete time circular shift on h1 followed by a FFT as shown in 
Figure 22. Unfortunately we still need the FFT of h1 (without the circular shift) and therefore the tradeoff 
requires adding an extra FFT, albeit in parallel with the other four FFTs. The remaining 4 multiplication 
can be done in parallel and the cyclic shift can be routed in hardware without adding to the latency.  Its 
computational complexity would now be 7 FFT, 4 multiplications, 2 adders and 0 NCOs. 

 

DFT{ℎ((𝑛 − 𝑛0)𝑚𝑜𝑑 𝑁)} = 𝐻(𝐾)𝑒𝑗
2𝜋

𝑁
𝑘𝑛0 (6) 

Letting n0 = 1 we obtain,       DFT{ ℎ((𝑛 − 1)𝑚𝑜𝑑 𝑁)} = 𝐻(𝐾)𝑒𝑗
2𝜋

𝑁
𝑘 (7) 
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Figure 22 Block diagram of the modified first architecture. 

After running this architecture with the same parameters in the Simulink environment we get 
the following results, summarized in the following table. 

Table 7. Architecture 2 Simulation Results 

Simulation Output Results from Simulink Implementation 
SNR Code Phase Delay Number of Buckets Metric 
124 379 3 2-6-N/2-5-2-0 

 

 

 

Figure 23 Simulation Output Results for architecture 2-7-N/2-4-2-0 
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10.4- Architecture 3 – Requires the use of a NCO. 
The third architecture is obtained by factorizing as follows the original equations [8]: 

A similar factorization can be found in [9] and [10]. 
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Figure 24 Block diagram of the second implemented architecture 

In comparison with the first architecture, this second architecture reduces the numbers of 
multiplications yet the number of adders used is greater. The structure is particularly different from the 
first one, as it can be seen in the equations from which the diagram was developed. 

Table 8. Architecture-3 Simulink simulation output results 

Simulation Output Results from Simulink Implementation 
SNR Code Phase Delay Number of Buckets Metric 
114.6 379 10 2-6-N/2-4-5-1 

 

𝑌0(𝑘) = [𝐻1
∗(𝑘) − 𝐻0

∗(𝑘)] 𝑋1(𝑘) + 𝐻0
∗(𝑘)[𝑋0(𝑘) + 𝑋1(𝑘)] 

𝑌1(𝑘) = [𝑒
𝑗

2𝜋
(𝑁/2)

𝑘
𝐻1

∗(𝑘) − 𝐻0
∗(𝑘)]𝑋0(𝑘) + 𝐻0

∗(𝑘)[𝑋0(𝑘) + 𝑋1(𝑘)] 
 

(8) 
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Figure 25 Simulation Output Results for architecture 2-6-N/2-4-5-1 

10.5- Architecture 4 – Requires the use of a circular shift in the discrete time domain. 
 

The final architecture is a modified version of Architecture 3.  The complex exponential can be 
omitted to reduce the by one the number, of multiplications and of numerically controlled oscillators.  
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Figure 26 Block diagram of the second modified architecture 

Another multiplication, and the use of a NCO, can be omitted if the complex exponential 
multiplication in frequency is translated to a circular time shift operation on h1 followed by a FFT. Again 
we still need the FFT of the un-shifted version of h1 therefore; the tradeoff requires the use of an extra 
FFT performed in parallel with the others. 

Table 9 Shifted in Time, Architecture-4 Simulink simulation output results 

Simulation Output Results from Simulink Implementation 
SNR Code Phase Delay Number of Buckets Metric 
114.6 379 10 2-7-N/2-3-5-0 
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Figure 27 Simulation Output Results for architecture 2-7-N/2-3-5-0 

In general terms the proposed architectures were compared for the number of adders, multipliers 
and FFTs that each one requires in order to parallelize the correlation process. 

Table 10 Comparison of the parallel architectures 

 First 
Architecture 

First Modified 
Architecture 

Second 
Architecture 

Second Modified 
Architecture 

Radix 2 2 2 2 
FFTs 6 7 6 7 

Multipliers 5 4 4 3 
Adders 2 2 5 5 
NCOs 1 0 1 0 

 

Radix-2 architecture will be almost twice as fast as the direct serial architecture [8] if 
implemented in hardware. The tradeoff is the extended use of hardware resources. 

Further architectures based on the Agarwal-Cooley cyclic convolution algorithm are also possible 
and in the process of being developed. 
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12. Appendix 

12.1 Simulink Model for Base Line Method 
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12.2 Simulink Model for Architecture 1 
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12.3 Simulink Model for Architecture 2 
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12.4 Simulink Model for Architecture 3 
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12.5 Simulink Model for Architecture 4 
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12.6 Matlab Code for a Standard Baseline Implementation Using Basic Modeled Data 
%****GPS PRN Correlator Detector (parallel code phase search)  
%****doppler search step: 1000 Hz. 
% Uses data 1ms in length (corresponds to 1 PRN) sampled at Fs 
%******Originated: Nov 19, 2013  (new name: BL_Model_Data_FH_1.m) 
%(former file name: baseline_stand_alone_5j.m and 5) 
clear 
clc 

  
% Works with modeled data. Code that uses real satellite records is also available. 

  

  
% ********* DATA SIGNAL MODELING *************** 

  
%************* SET PULSE, INTERFERENCE AND NOISE PARAMETERS ***************** 
n=1023; %Code Length 
k=40 %number of length-n*p buckets that we are listening at 
delay=378% synch pulse delay in samples within each bucket  
delaymp=80; % multipath pulse delay in samples within the buckets in which it is 

embedded 
delayint=[80 130 5 280 40 30 100 300]; % interference pulses delay from satellites 
interferencegain=[0.7  2  3  0.3  0.9 4 1 3];% gain of interference pulses from 

other satellites 
multipathgain=0.2 % gain of multipath signal interference 
snrinputsignal=-20 %signal to noise ratio in each bucket using AWGN 
thresholdsparse=90; 
thresholdbaseline=100; 

  
fs =  1023000; 
fca = 1023000; 

  
%************* PN GOLD SEQUENCE GENERATION for k Satellites *********** 
satellites=[01 03 07 19 20 22 24 28 31]; 
% satellites=[6 12 14 4 2 30]; 
g=cacode(satellites,fs/fca);  % generates Gold Code:  Function by 
pulse=g(1,:); %Define code to be detected 
pulse=pulse*2-1;% maps [0,1] values to [-1,1] values 
n = length(pulse); 

  
%***********  GENERATE INTERFERENCE CODES FROM OTHER SATELLITES ******* 

  
nint=size(g); 
for i=2:nint 
pulseint(i-1,:)=g(i,:); 
end 

  
% maps [0,1] values to [-1,1] values 
for i=1:nint-1 
pulseint(i,:)=pulseint(i,:)*2-1; 
end 

  

  
% ************* MODELING OF RECEIVED SIGNAL ****************** 
% The desired pulse + noise + interference pulses + multipath will be embedded. 

  
N=(n); %Received signal length in terms k sections of length-n*p each 
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signal(N)=0; %length-N signal definition with all 0 entries 

  

  
signalmain=pulse; 
signal=signalmain; 
signal=circshift(signal.', delay-1)'; 

  
% MULTIPATH INTERFERENCE 

  

  
signalmultipath1(N)=0; %length-N signal definition with all 0 entries 

  
% startpulsemp=delaymp; %pulse starts with  a delay in the bucket where it is 

embedded. 
% endpulsemp=startpulsemp+n; %pulse ends after starting with certain delay in 

bucketnumber 
% signalmultipath1(startpulsemp:endpulsemp-1)=pulse; %pulse incorporated within 

previous signal range 

  
signalmultipath=signalmain; 
signalmultipath=circshift(signalmain.', delaymp-1)'; 

  
% INTERFERENCE SIGNALS 

  
%interference signal initialization 
for i=1:nint-1 
signalint(i,N)=0; 
end 

  

  
%interference pulses 
for i=1:nint-1 

     
%Add P=3 interference pulses from each interfyring satellite per bucket circularly 

shifted 
signalmainint=[pulseint(i,:)]; 
signalint(i,:)=signalmainint; 
signalint(i,:)=circshift(signalint(i,:).', delayint(i)-1)'; 

  
end 

  
%ADD INTERFERENCE TO SIGNAL 

  
%add interference pulses from other satellites 
for i=1:nint-1 
    signal=signal+interferencegain(i)*signalint(i); 
end 

  
%add interference multipath pulse from the satellite we want to synch 
signal=signal+ multipathgain*signalmultipath1; 

  
%ADD AWGN TO EACH SIGNAL BUCKET TO FINISH Data Signal Modeling 

  
bucketnp=[]; 
bucketnp(n,k)=0; 
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for i=1:k 

       
        %SELECT MODELED SIGNAL DATA 
        bucketnp(:,i)=signal;  
        bucketnp(:,i)=awgn(bucketnp(:,i),snrinputsignal);% add AWGN 
        wholesignal((i-1)*n+1:i*n)=bucketnp(:,i); 
        %wholesignal=wholesignal/max(wholesignal); 

  
end 

  

  
%This lines are for using the BASELINE method as a STANDALONE method 
%Comment otherwise: 

  

  
%************************************************************************ 
fftpulse=fft(pulse); 
conjfftpulse=conj(fft(pulse)); 

  
tic 
% Method4: BASELINE METHOD using O(nlogn) mults and length-n buckets  (TEST CODE) 
% Full correlation between pulse and length n-bucket to find actual delay within 

bucket 
% 
corr4(n)=0; % correlation result preallocation 
SNRmethod4=1; % SNR method 4 init 
x=[]; 
x(n)=0; %acumulation bucket 

  
for ii=1:floor(length(wholesignal)/n) % divides signal into buckets of length n 

     
% %Correlation using cconv (freq domain) 
% corr4=cconv(fliplr(pulse),wholesignal((ii-1)*n+1:ii*n),n);%uses FFT to conv (or 

correlate)with each length-n bucket 
% x=corr4+x; % accumulates with previous correlation 
% [size delaysamples4]=max(x); % find the maximum size and position in accumulated 

correlations 
% delaymethod4=delaysamples4+1;%adjust delay from FFT cyclic conv result 

  

  
%Correlation using ifft(fft.fft)   (freq domain) 
wholesignal = wholesignal((ii-1)*(n)+1:ii*(n)); 
corr4=ifft(conjfftpulse.*fft(wholesignal));%uses FFT to conv (or correlate)with 

each length-n bucket 
x=(corr4)+ (x); % accumulates with previous correlation 
[size delaysamples4]=max(x); % find the maximum size and position in accumulated 

correlations 
delaymethod4=delaysamples4;%adjust delay from FFT cyclic conv result 

  

  
%SIGNAL TO NOISE RATIO Calculation (signal: peak power    noise: noise floor power) 
xx=x; % auxiliary variable in order to keep the accumulator as it is 
xx(delaysamples4)=0; %takes peak out of correlation result 
%noisefloorpwr=var(corr); %calculate noise variance %power of noise in output 

bucket 
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%noisefloorpwr=var(detrend(corr)); %power of noise in output bucket 
noisefloorpwr=mean(xx.^2)  ;%power of noise bed in output bucket (peak not 

included) 
SNRmethod4=size^2/noisefloorpwr;  % SNR calculation for this method 

  
         if SNRmethod4>thresholdbaseline  % threshold comparison  

              
              delaymethod4=delaymethod4 

               
              SNRmethod4=size^2/noisefloorpwr 

               
              buckets_used_baseline=ii 

               
             break 
         end 

       
end 

  
baselinetime=toc  

 

 

 


